Tooling is an important process in the production of automobiles today. The current market is moving from high-volume and low-mix to low-volume and high-mix car production. Every single part of a new car requires a unique tool. Once the product design department finalizes the design of a new part, such as for example a deck-lid, fender, bracket or cross member, it is released to the feasibility and tooling departments, where an appropriate tool to produce the part is then designed. With so many new auto plants and new vehicle designs being launched faster than ever before, companies which make these tools must find effective ways to meet these demands.

Up until now, a tooling company could manufacture one tool that ran, for example, 500,000 parts for one model. Now, it is necessary to manufacture five or six tools that stamp 100,000 parts in five or six styles to support a platform of customized vehicles. This poses huge challenges for tooling companies as they have to find an efficient way to reduce overall lead time and costs and at the same time to ensure high tool and part quality. In order to do this, the number of press tryouts and optimization loops as well as the total lead time in the tooling process must be reduced.

In order to achieve these goals, tooling engineers look for the best solutions to quickly and efficiently setup the entire tooling process, make process modifications and evaluate different process layouts to select the best one. The rapid verification of multiple new concepts for quality and cost improvements is very important as well as the identification of complex forming problems during the early phase of tool development. The main goal is to increase the reliability of stamping tools in order to achieve efficient and reliable production or, in other words, to find the best optimized tool designs for a robust stamping process.

Further information on tooling at AutoForm:

Tool Design and Build Made SIMple

Software for Rapid Die Face Generation during Process Engineering