AutoForm-HemPlanner

Software for Efficient Planning of Hemming Processes

- Efficient planning of hemming processes to meet quality and cost requirements
- Support of roll and table top hemming
- Effective implementation for early feasibility and final validation studies, choice of appropriate hemming technology and equipment, tool design and process planning
- Rapid identification of typical hemming defects, including splits and wrinkles in the flange, material overlaps and material roll-in
- Prediction of full assembly springback after hemming
AutoForm-HemPlanner enables users to easily define and optimize the hemming operation. Various hemming processes can be designed to evaluate whether the choice of flange outline and flange opening angle are accurate. In addition, the software allows for the prediction of full assembly springback after hemming.

With AutoForm-HemPlanner, definition of the hemming process is streamlined since the design of tool active faces is no longer merely based on experience and the costly principle of trial-and-error. AutoForm-HemPlanner supports roll and table top hemming. Depending on the product development process phase, AutoForm-HemPlanner supports two use cases, namely quick and advanced hemming.

Quick hemming is used in the early stages of product development and production planning, when the die layout of the drawing and forming operations is still not available. The CAD geometry of the flanged as well as hemmed parts provides the main input for the design of the hemming operation. The advantage of quick hemming is that multiple simulations can be run in order to rapidly evaluate various process concepts and possible geometry modifications that will result in manufacturable parts. For example, the flange outline and flange opening can be validated at the same time.

Advanced hemming is used in process engineering when the detailed definition of the forming operations is available. The accuracy of simulation results is increased by taking into account the history of material deformation accumulated throughout the previous manufacturing operations. Advanced hemming is used to validate the selected hemming concept, i.e. validate the design of the clamping fixture, check if the spring supported roller follows the predefined trajectory, evaluate the potential hemming defects as well as predict full assembly springback. These information form the basis for compensation of inner and outer parts as well as any adjustments of the hemming equipment.

AutoForm Engineering – Company Offices

- **Switzerland**
 - Wilen b. Wollerau: +41 43 444 61 61
- **Germany**
 - Dortmund: +49 231 9742 320
- **The Netherlands**
 - Krimpen a/d IJssel: +31 180 668 255
- **France**
 - Aix-en-Provence: +33 4 42 90 42 60
- **Spain**
 - Barcelona: +34 93 320 84 22
- **Italy**
 - Turin: +39 011 620 41 11
- **Czech Republic**
 - Praha: +420 603 248 580
- **Sweden**
 - Stockholm: +31 180 668 255
- **United States**
 - Troy, MI: +1 888 428 8636
- **Mexico**
 - Corregidora, Qro.: +52 442 225 1104
- **Brazil**
 - São Bernardo de Campo: +55 11 4122 6777
- **India**
 - Hyderabad: +91 40 4068 9999
- **China**
 - Shanghai: +86 21 5386 1153
- **Japan**
 - Tokyo: +81 3 6459 0881
- **Korea**
 - Seoul: +82 2 2113 0770

© 2020 AutoForm Engineering GmbH, Switzerland.

"AutoForm" and other trademarks listed under www.autoform.com or trade names contained in this documentation or the Software are trademarks or registered trademarks of AutoForm Engineering GmbH. Third party trademarks, trade names, product names and logos may be the trademarks or registered trademarks of their respective owners. AutoForm Engineering GmbH owns and practices various patents and patent applications that are listed on its website www.autoform.com. Software and specifications may be subject to change without notice.

Publication HP-3-E